Section 3.5 - Basic Differentiation Properties

Objectives:

- The student will be able to calculate the derivative of a constant function.
- The student will be able to apply the power rule.
- The student will be able to apply the constant multiple and sum and difference properties.
- The student will be able to solve applications.

Derivative Notation

In the preceding section we defined the derivative of a function. There are several widely used symbols to represent the derivative. Given \(y = f(x) \), the derivative of \(f \) at \(x \) may be represented by any of the following:

- \(f'(x) \)
- \(y' \)
- \(\frac{dy}{dx} \)

We will see some nice rules that allow us to quickly find the derivative of a function without using the definition of derivative every time.

\[
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

Ex: What is the slope of a constant function?

The graph of \(f(x) = C \) is a horizontal line with slope 0, so we would expect \(f'(x) = 0 \).
Theorem 1. Let $y = f(x) = b$ be a constant function, then $y' = f'(x) = 0$. The derivative of a constant is zero.

Ex. $f(x) = 3$ then $f'(x) = 0$

Power Rule
A function of the form $f(x) = x^n$ is called a power function. This includes $f(x) = x$ (where $n = 1$) and radical functions (fractional n).

Theorem 2. (Power Rule) Let n be an integer and $f(x) = x^n$ be a power function, then

$$y' = f'(x) = \frac{dy}{dx} = n(x^{n-1})$$

THEOREM 2 IS VERY IMPORTANT. IT WILL BE USED A LOT!

<table>
<thead>
<tr>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = x^2$</td>
<td>$f'(x) = 2x^{2-1} = 2x = 2x$</td>
</tr>
<tr>
<td>$f(x) = x^3$</td>
<td>$f'(x) = 3x^{3-1} = 3x^2$</td>
</tr>
<tr>
<td>$f(x) = x$</td>
<td>$f'(x) = 1x^{1-1} = 1x^0 = 1$</td>
</tr>
<tr>
<td>$f(x) = x^{-2}$</td>
<td>$f'(x) = -2x^{-2-1} = -2x^{-3} = -2\frac{x^{-3}}{x^2}$</td>
</tr>
<tr>
<td>$f(x) = \frac{1}{x^3} = x^{-3}$</td>
<td>$f'(x) = -3x^{-3-1} = -3x^{-4} = -3\frac{x^{-4}}{x^2}$</td>
</tr>
</tbody>
</table>

Ex. Differentiate $f(x) = x^5$.
Ex: Differentiate $f(x) = \sqrt{x}$.

We can extend our power rule to rational exponents.

$$f(x) = \sqrt{x} = x^{1/2}$$

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}}$$

Constant Multiple Property

Theorem 3. Let $y = f(x) = k \cdot u(x)$ be a constant k times a function $u(x)$. Then

$$y' = f'(x) = k \cdot u'(x).$$

In words: The derivative of a constant times a function is the constant times the derivative of the function.

Ex: Differentiate $f(x) = 7x^4$.
Examples:
Differentiate $f(x) = \frac{2}{x}$

Differentiate $f(x) = \frac{4x^2}{5}$

Differentiate $f(x) = \frac{-3x}{2}$

Differentiate $f(x) = 2\sqrt{x}$
Differentiate \(f(x) = \frac{1}{2\sqrt[3]{x^2}} \)

Sum and Difference Properties

Theorem 5. If \(y = f(x) = u(x) \pm v(x) \), then
\[
y' = f'(x) = u'(x) \pm v'(x).
\]

In words:

- The derivative of the **sum** of two differentiable functions is the sum of the derivatives.
- The derivative of the **difference** of two differentiable functions is the difference of the derivatives.

\[
\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]
\]

The derivative of a sum or difference is the sum or difference of the derivatives

Caution It is **NOT** true that derivatives...

\[
\frac{d}{dx} [f(x) \cdot g(x)] \neq \frac{d}{dx} [f(x)] \cdot \frac{d}{dx} [g(x)]
\]
Ex. Differentiate $f(x) = [x^3 - 4x + 5]$

Ex. Differentiate $f(x) = \left[\frac{-x^4}{2} + 3x^3 - 2x\right]$

Applications
Remember that the derivative gives the **instantaneous rate of change** of the function with respect to x. That might be:

- Instantaneous velocity.
- Tangent line slope at a point on the curve of the function.
- Marginal Cost. If $C(x)$ is the cost function, that is, the total cost of producing x items, then $C'(x)$ approximates the cost of producing one more item at a production level of x items. $C'(x)$ is called the **marginal cost**.

Application1: $f'(c)$ is the slope of the tangent line to the graph of f at $x=c$
Application2: If $y=f(x)$, then $f'(c)$ is the rate of change of y with respect to x at $x=c$.
A common use of the rate of change is to describe the motion of an object moving in a straight line. The **position function** is denoted by $s(t)$ and is defined as $s(t) = \text{position of object at time } t$

In general, the velocity of the object at time t is given by.

$$v(t) = \lim_{\Delta t \to 0} \frac{s(t+\Delta t) - s(t)}{\Delta t} = s'(t)$$

Velocity can be negative, zero or positive. The speed of the object is the absolute value of its velocity. Speed cannot be negative.

Ex: The position of a free-falling object under the influence of gravity can be modeled by the position function. $s(t) = -16t^2 + v_0t + s_0$, where v_0 is the initial velocity of the object, s_0, is the initial position measured in feet, and time is measured in seconds.

A billiard ball is dropped from a height of 100 feet. Its position function is given by $s(t) = -16t^2 + 100$

a. When does the ball hit the ground?
b. What is the ball’s velocity at impact?

Tangent Line Example
Let $f(x) = x^4 - 6x^2 + 10$.
(a) Find $f'(x)$
(b) Find the equation of the tangent line at $x = 1$
Application Example
The total cost (in dollars) of producing x portable radios per day is

$$C(x) = 1000 + 100x - 0.5x^2 \quad \text{for} \quad 0 \leq x \leq 100.$$

1. Find the marginal cost at a production level of x radios.

2. Find the marginal cost at a production level of 80 radios and interpret the result.

3. Find the actual cost of producing the 81st radio and compare this with the marginal cost.

Summary
- If $f(x) = C$, then $f'(x) = 0$
- If $f(x) = x^n$, then $f'(x) = n x^{n-1}$
- If $f(x) = k \cdot u(x)$, then $f'(x) = k \cdot u'(x)$
- If $f(x) = u(x) \pm v(x)$, then $f'(x) = u'(x) \pm v'(x)$.
Section 3.6 - Differentials

Objectives:
- The student will be able to apply the concept of increments.
- The student will be able to compute differentials.
- The student will be able to calculate approximations using differentials.

Increments
In a previous section we defined the derivative of \(f \) at \(x \) as the limit of the difference quotient:

\[
\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Increment notation will enable us to interpret the numerator and the denominator of the difference quotient separately.

Ex: Let \(y = f(x) = x^3 \).

If \(x \) changes from 2 to 2.1, then \(y \) will change from \(y = f(2) = 8 \) to \(y = f(2.1) = 9.261 \).

We can write this using increment notation. The change in \(x \) is called the increment in \(x \) and is denoted by \(\Delta x \). \(\Delta \) is the Greek letter “delta”, which often stands for a difference or change. Similarly, the change in \(y \) is called the increment in \(y \) and is denoted by \(\Delta y \).

In our example,

\[
\Delta x = 2.1 - 2 = 0.1 \\
\Delta y = f(2.1) - f(2) = 9.261 - 8 = 1.261.
\]
Graphical Illustration of Increments

For \(y = f(x) \)

\[
\Delta x = x_2 - x_1 \quad \Delta y = y_2 - y_1
\]

\(x_2 = x_1 + \Delta x = f(x_2) - f(x_1) = f(x_1 + \Delta x) - f(x_1) \)

- \(\Delta y \) represents the change in \(y \) corresponding to a \(\Delta x \) change in \(x \).
- \(\Delta x \) can be either positive or negative.

\[\Delta y \text{ represents the change in } y \text{ corresponding to a } \Delta x \text{ change in } x. \]

\[\Delta x \text{ can be either positive or negative.} \]

![Graphical Illustration](image)

Differentials

Assume that the limit

\[f''(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \]

exists.

For small \(\Delta x \),

\[f'(x) \approx \frac{\Delta y}{\Delta x} \]

Multiplying both sides of this equation by \(\Delta x \) gives us

\[\Delta y \approx f'(x) \Delta x. \]

Here the increments \(\Delta x \) and \(\Delta y \) represent the actual changes in \(x \) and \(y \).

One of the notations for the derivative is

\[f'(x) = \frac{dy}{dx} \]

If we pretend that \(dx \) and \(dy \) are actual quantities, we get

\[dy = f'(x) \, dx \]

We treat this equation as a definition, and call \(dx \) and \(dy \) differentials.
Interpretation of Differentials

Δx and dx are the same, and represent the change in x.

The increment Δy stands for the **actual change** in y resulting from the change in x.

The differential dy stands for the **approximate change** in y, estimated by using derivatives. $\Delta y \approx dy = f'(x) \, dx$

In applications, we use dy (which is easy to calculate) to estimate Δy (which is what we want).

Ex: Find dy for $f(x) = x^2 + 3x$ and evaluate dy for $x = 2$ and $dx = 0.1$.
Ex: Cost-Revenue
A company manufactures and sells x transistor radios per week. If the weekly cost and revenue equations are

\[
C(x) = 5000 + 2x \\
R(x) = 10x - \frac{x^2}{1000}
\]

find the approximate changes in revenue and profit if production is increased from 2,000 to 2,010 units/week.
Section 3.7 - Marginal Analysis in Business and Economics

Objectives:
The student will be able to compute:
- Marginal cost, revenue and profit
- Marginal average cost, revenue and profit
- The student will be able to solve applications

Marginal Cost
Remember that marginal refers to an instantaneous rate of change, that is, a derivative.

Definition:
If x is the number of units of a product produced in some time interval, then
\[
\text{Total cost} = C(x) \\
\textbf{Marginal cost} = C'(x)
\]

Marginal Revenue and Marginal Profit

Definition:
If x is the number of units of a product sold in some time interval, then
\[
\text{Total revenue} = R(x) \\
\textbf{Marginal revenue} = R'(x)
\]

If x is the number of units of a product produced and sold in some time interval, then
\[
\text{Total profit} = P(x) = R(x) - C(x) \\
\textbf{Marginal profit} = P'(x) = R'(x) - C'(x)
\]
Marginal Cost and Exact Cost
Assume $C(x)$ is the total cost of producing x items. Then the exact cost of producing the $(x + 1)$st item is
\[C(x + 1) - C(x). \]
The marginal cost is an approximation of the exact cost.
\[C'(x) \approx C(x + 1) - C(x). \]
Similar statements are true for revenue and profit.

Ex: The total cost of producing x electric guitars is
\[C(x) = 1,000 + 100x - 0.25x^2. \]

1. Find the exact cost of producing the 51st guitar.

2. Use the marginal cost to approximate the cost of producing the 51st guitar.
Marginal Average Cost

Definition: If x is the number of units of a product produced in some time interval, then

Average cost per unit = \[\bar{C}(x) = \frac{C(x)}{x} \]

Marginal average cost = \[\bar{C}'(x) = \frac{d}{dx} \bar{C}(x) \]

Marginal Average Revenue

If x is the number of units of a product sold in some time interval, then

Average revenue per unit = \[\bar{R}(x) = \frac{R(x)}{x} \]

Marginal average revenue = \[\bar{R}'(x) = \frac{d}{dx} \bar{R}(x) \]

Marginal Average Profit

If x is the number of units of a product produced and sold in some time interval, then

Average profit per unit = \[\bar{P}(x) = \frac{P(x)}{x} \]

Marginal average profit = \[\bar{P}'(x) = \frac{d}{dx} \bar{P}(x) \]

Warning! To calculate the marginal averages you must calculate the average first (divide by x), and then the derivative. If you change this order you will get no useful economic interpretations.
Ex: The total cost of printing x dictionaries is $C(x) = 20,000 + 10x$

1. Find the average cost per unit if 1,000 dictionaries are produced.

2. Find the marginal average cost at a production level of 1,000 dictionaries, and interpret the results.

3. Use the results from above to estimate the average cost per dictionary if 1,001 dictionaries are produced.
Ex: The price-demand equation and the cost function for the production of television sets are given by

\[p(x) = 300 - \frac{x}{30} \quad \text{and} \quad C(x) = 150,000 + 30x \]

where \(x \) is the number of sets that can be sold at a price of $p per set, and \(C(x) \) is the total cost of producing \(x \) sets.

1. Find the marginal cost.

2. Find the revenue function in terms of \(x \).

3. Find the marginal revenue.

4. Find \(R'(1500) \) and interpret the results.
5. Graph the cost function and the revenue function on the same coordinate. Find the break-even point. $0 \leq x \leq 9,000$ and $0 \leq y \leq 700,000$

6. Find the profit function in terms of x.

7. Find the marginal profit.

8. Find $P'(1500)$ and interpret the results.